50 research outputs found

    A quasi-linear algorithm to compute the tree of shapes of n-D images

    Get PDF
    International audienceTo compute the morphological self-dual representation of images, namely the tree of shapes, the state-of-the-art algorithms do not have a satisfactory time complexity. Furthermore the proposed algorithms are only effective for 2D images and they are far from being simple to implement. That is really penalizing since a self-dual representation of images is a structure that gives rise to many powerful operators and applications, and that could be very useful for 3D images. In this paper we propose a simple-to-write algorithm to compute the tree of shapes; it works for \nD images and has a quasi-linear complexity when data quantization is low, typically 12~bits or less. To get that result, this paper introduces a novel representation of images that has some amazing properties of continuity, while remaining discrete

    A conservative coupling algorithm between a compressible flow and a rigid body using an Embedded Boundary method

    Get PDF
    This paper deals with a new solid-fluid coupling algorithm between a rigid body and an unsteady compressible fluid flow, using an Embedded Boundary method. The coupling with a rigid body is a first step towards the coupling with a Discrete Element method. The flow is computed using a Finite Volume approach on a Cartesian grid. The expression of numerical fluxes does not affect the general coupling algorithm and we use a one-step high-order scheme proposed by Daru and Tenaud [Daru V,Tenaud C., J. Comput. Phys. 2004]. The Embedded Boundary method is used to integrate the presence of a solid boundary in the fluid. The coupling algorithm is totally explicit and ensures exact mass conservation and a balance of momentum and energy between the fluid and the solid. It is shown that the scheme preserves uniform movement of both fluid and solid and introduces no numerical boundary roughness. The effciency of the method is demonstrated on challenging one- and two-dimensional benchmarks

    Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserina

    Get PDF
    The success of filamentous fungi in colonizing most natural environments can be largely attributed to their ability to form an expanding interconnected network, the mycelium, or thallus, constituted by a collection of hyphal apexes in motion producing hyphae and subject to branching and fusion. In this work, we characterize the hyphal network expansion and the structure of the fungus Podospora anserina under controlled culture conditions. To this end, temporal series of pictures of the network dynamics are produced, starting from germinating ascospores and ending when the network reaches a few centimeters width, with a typical image resolution of several micrometers. The completely automated image reconstruction steps allow an easy post-processing and a quantitative analysis of the dynamics. The main features of the evolution of the hyphal network, such as the total length L of the mycelium, the number of "nodes" (or crossing points) N and the number of apexes A, can then be precisely quantified. Beyond these main features, the determination of the distribution of the intra-thallus surfaces (S; i; ) and the statistical analysis of some local measures of N, A and L give new insights on the dynamics of expanding fungal networks. Based on these results, we now aim at developing robust and versatile discrete/continuous mathematical models to further understand the key mechanisms driving the development of the fungus thallus

    Pattern Spectra from Different Component Trees for Estimating Soil Size Distribution

    Get PDF
    We study the pattern spectra in context of soil structure analysis. Good soil structure is vital for sustainable crop growth. Accurate and fast measuring methods can contribute greatly to soil management decisions. However, the current in-field approaches contain a degree of subjectivity, while obtaining quantifiable results through laboratory techniques typically involves sieving the soil which is labour- and time-intensive. We aim to replace this physical sieving process through image analysis, and investigate the effectiveness of pattern spectra to capture the size distribution of the soil aggregates. We calculate the pattern spectra from partitioning hierarchies in addition to the traditional max-tree. The study is posed as an image retrieval problem, and confirms the ability of pattern spectra and suitability of different partitioning trees to re-identify soil samples in different arrangements and scales

    ON THE THEORY OF PLANAR SHAPE

    No full text
    One of the aims of computer vision in the past 30 years has been to recognize shapes by numerical algorithms. Now, what are the geometric features on which shape recognition can be based? In this paper, we review the mathematical arguments leading to a unique definition of planar shape elements. This definition is derived from the invariance requirement to not less than five classes of perturbations, namely noise, affine distortion, contrast changes, occlusion, and background. This leads to a single possibility: shape elements as the normalized, affine smoothed pieces of level lines of the image. As a main possible application, we show the existence of a generic image comparison technique able to find all shape elements common to two images

    Curvature, metric and parametrization of origami tessellations: Theory and application to the eggbox pattern - Electronic Supplementary Material

    No full text
    Details regarding the determination of the Christoffel symbols and the out-of-plane Poisson's ratio of the eggbox patter
    corecore